Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 12(1): 16528, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2050546

RESUMEN

Real-time effects of changing body position and positive end-expiratory pressure (PEEP) on regional lung overdistension and collapse in individual patients remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP in supine and prone body positions seeking to reduce lung collapse and overdistension in mechanically ventilated patients with coronavirus disease (COVID-19)-induced acute respiratory distress syndrome (ARDS). We hypothesized that prone positioning with bedside titrated PEEP would provide attenuation of both overdistension and collapse. In this prospective observational study, patients with COVID-19-induced ARDS under mechanical ventilation were included. We used electrical impedance tomography (EIT) with decremental PEEP titration algorithm (PEEPEIT-titration), which provides information on regional lung overdistension and collapse, along with global respiratory system compliance, to individualize PEEP and body position. PEEPEIT-titration in supine position followed by PEEPEIT-titration in prone position were performed. Immediately before each PEEPEIT-titration, the same lung recruitment maneuver was performed: 2 min of PEEP 24 cmH2O and driving pressure of 15 cmH2O. Forty-two PEEPEIT-titration were performed in ten patients (21 pairs supine and prone positions). We have found larger % of overdistension along the PEEP titration in prone than supine position (P = 0.042). A larger % of collapse along the PEEP titration was found in supine than prone position (P = 0.037). A smaller respiratory system compliance was found in prone than supine position (P < 0.0005). In patients with COVID-19-induced ARDS, prone body position, when compared with supine body position, decreased lung collapse at low PEEP levels, but increased lung overdistension at PEEP levels greater than 10 cm H2O.Trial registration number: NCT04460859.


Asunto(s)
COVID-19 , Respiración con Presión Positiva , Atelectasia Pulmonar , Síndrome de Dificultad Respiratoria , COVID-19/complicaciones , COVID-19/terapia , Humanos , Pulmón/patología , Posición Prona , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia
2.
Intensive Care Med Exp ; 8(1): 10, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1453066

RESUMEN

BACKGROUND: Real-time bedside information on regional ventilation and perfusion during mechanical ventilation (MV) may help to elucidate the physiological and pathophysiological effects of MV settings in healthy and injured lungs. We aimed to study the effects of positive end-expiratory pressure (PEEP) and tidal volume (VT) on the distributions of regional ventilation and perfusion by electrical impedance tomography (EIT) in healthy and injured lungs. METHODS: One-hit acute lung injury model was established in 6 piglets by repeated lung lavages (injured group). Four ventilated piglets served as the control group. A randomized sequence of any possible combination of three VT (7, 10, and 15 ml/kg) and four levels of PEEP (5, 8, 10, and 12 cmH2O) was performed in all animals. Ventilation and perfusion distributions were computed by EIT within three regions-of-interest (ROIs): nondependent, middle, dependent. A mixed design with one between-subjects factor (group: intervention or control), and two within-subjects factors (PEEP and VT) was used, with a three-way mixed analysis of variance (ANOVA). RESULTS: Two-way interactions between PEEP and group, and VT and group, were observed for the dependent ROI (p = 0.035 and 0.012, respectively), indicating that the increase in the dependent ROI ventilation was greater at higher PEEP and VT in the injured group than in the control group. A two-way interaction between PEEP and VT was observed for perfusion distribution in each ROI: nondependent (p = 0.030), middle (p = 0.006), and dependent (p = 0.001); no interaction was observed between injured and control groups. CONCLUSIONS: Large PEEP and VT levels were associated with greater pulmonary ventilation of the dependent lung region in experimental lung injury, whereas they affected pulmonary perfusion of all lung regions both in the control and in the experimental lung injury groups.

3.
BMC Pulm Med ; 21(1): 133, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1199907

RESUMEN

BACKGROUND: Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. Right-left lung aeration asymmetry and poorly recruitable lungs with increased recruitability with alternating body position between supine and prone have been reported. However, real-time effects of changing body position and PEEP on regional overdistension and collapse, in individual patients, remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP and body positioning in order to reduce the mechanisms of ventilator-induced lung injury: collapse and overdistension. METHODS: We here report a series of five consecutive mechanically ventilated patients with COVID-19-associated ARDS in which sixteen decremental PEEP titrations were performed in the first days of mechanical ventilation (8 titration pairs: supine position immediately followed by 30° targeted lateral position). The choice of lateral tilt was based on X-Ray. This targeted lateral position strategy was defined by selecting the less aerated lung to be positioned up and the more aerated lung to be positioned down. For each PEEP level, global and regional collapse and overdistension maps and percentages were measured by electrical impedance tomography. Additionally, we present the incidence of lateral asymmetry in a cohort of forty-four patients. RESULTS: The targeted lateral position strategy resulted in significantly smaller amounts of overdistension and collapse when compared with the supine one: less collapse along the PEEP titration was found within the left lung in targeted lateral (P = 0.014); and less overdistension along the PEEP titration was found within the right lung in targeted lateral (P = 0.005). Regarding collapse within the right lung and overdistension within the left lung: no differences were found for position. In the cohort of forty-four patients, ventilation inequality of > 65/35% was observed in 15% of cases. CONCLUSIONS: Targeted lateral positioning with bedside personalized PEEP provided a selective attenuation of overdistension and collapse in mechanically ventilated patients with COVID-19-associated ARDS and right-left lung aeration/ventilation asymmetry. TRIAL REGISTRATION: Trial registration number: NCT04460859.


Asunto(s)
COVID-19/terapia , Posicionamiento del Paciente/métodos , Atelectasia Pulmonar/prevención & control , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Adulto , Anciano , Anciano de 80 o más Años , Impedancia Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración con Presión Positiva/métodos , Estudios Prospectivos , Atelectasia Pulmonar/terapia , Respiración Artificial/métodos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA